반응형
* 표기법 *
vector : bold 형태 or 문자위에 bar 1개
dyadic : bold 형태 위에 bar 1개 or 문자위에 bar 2개
예)
Vectors and dyadics are used, in general, to describe linear transformation within a given orthogonal coordinate system, and they simplify the manipulations of mathmtical relations, compared to using tensors.
For electromagnetic problems, where linear transformations between sources and fields within a given orthogonal coordinate system are often necessary, vectors and dyadics are very convenient to use.
Let us now define the vector A, C, D1, D2, and D3 in a rectangular coordinate system with unit vectors
Let us now write that
or
where bar{D} is a dyadic,
반응형
'Major > Electromagnetics' 카테고리의 다른 글
media의 종류 (linear, homogeneous, dispersive, isotropic) (0) | 2010.01.29 |
---|---|
전자랜지(Microwave Oven) 주파수와 작동원리 (0) | 2009.12.04 |
coherent vs. noncoherent (incoherent) (0) | 2009.09.04 |
Isotropic, An-isotropic, Bi-isotropic (0) | 2009.06.14 |
Polarization #1 [편파의 정의와 종류] (6) | 2008.08.30 |
댓글