Trigonometric Relations
1. Sum or Difference:
$ sin\left ( x\pm y \right )=sinx cosy\pm cosxsiny \\ cos\left ( x\pm y \right )=cosx cosy\mp sinxsiny \\ tan\left ( x\pm y \right )= \frac{tanx \pm tany}{1 \mp tanxtany} \\ sin^{2}x + cos^{2}x = 1 \\ tan^{2}x + 1 = sec^{2}x \\ 1 + cot^{2}x = csc^{2}x $
2. Products into Sum or Difference:
$ 2sinxcosy = sin \left (x+y \right ) + sin \left (x-y \right ) \\ 2sinxsiny = -cos \left (x+y \right ) + cos \left (x-y \right ) \\ 2cosxcosy = cos \left (x+y \right ) + cos \left (x-y \right ) $
3. Sum or Difference into Products:
$ sinx+siny = 2sin\left (\frac{x+y}{2} \right )cos\left (\frac{x-y}{2} \right ) \\ sinx-siny = 2cos\left (\frac{x+y}{2} \right )sin\left (\frac{x-y}{2} \right ) \\ cosx-cosy = -2sin\left (\frac{x+y}{2} \right )sin\left (\frac{x-y}{2} \right ) \\ cosx+cosy = 2cos\left (\frac{x+y}{2} \right )cos\left (\frac{x-y}{2} \right ) $
4. Double and Half-angles:
$ sin2x = 2sinxcosx \\ cos2x = cos^{2}x - sin^{2}x = 1 - 2sin^{2}x = 2cos^{2}x - 1 \\ tan2x = \frac{2tanx}{1-tan^{2}x}\\ tan \frac{x}{2} = \pm\sqrt{\frac{1-cosx}{1+cosx}}= \frac {sinx}{1+cosx}=\frac{1-cosx}{sinx} $
5. Series:
$\mathrm{sin}x=\frac{e^{jx}-e^{jx}}{2j}=x- \frac{x^3}{3!}+ \frac{x^5}{5!}- \frac{x^7}{7!}+... \\ \mathrm{cos}x=\frac{e^{jx}+e^{jx}}{2}=x- \frac{x^2}{2!}+ \frac{x^4}{4!}- \frac{x^6}{6!}+... \\ \mathrm{tan}x=\frac{e^{jx}-e^{jx}}{j\left ( e^{jx}+e^{jx} \right )}=x+ \frac{x^3}{3}+ \frac{2x^5}{15}+ \frac{17x^7}{315}+... $
6. Etc.:
$ \mathrm{sin}x = \mathrm{cos}\left ( x-\frac{\pi}{2} \right ) = \mathrm{cos}\left ( \frac{\pi}{2} -x\right ) \\ \mathrm{cos}x = \mathrm{sin}\left ( x+\frac{\pi}{2} \right ) = \mathrm{sin}\left ( \frac{\pi}{2} -x\right ) \\ \mathrm{sin}\left ( \pi - x \right )=\mathrm{sin}x \\ \mathrm{cos}\left ( \pi - x \right )=-\mathrm{cos}x \\
\mathrm{cot}x = \mathrm{cot}\left ( \pi +x \right )= \mathrm{cot}\left ( 2\pi +x \right ) = -\mathrm{cot}\left ( \pi -x \right )= -\mathrm{cot}\left ( 2\pi -x \right )$
0° | 30° (= 𝜋/6) | 45° (= 𝜋/4) | 60° (= 𝜋/3) | 90° (= 𝜋/2) | |
sin | 0 | 1/2 | $ \sqrt{2}/2 $ | $ \sqrt{3}/2 $ | 1 |
cos | 1 | $ \sqrt{3}/2 $ | $ \sqrt{2}/2 $ | 1/2 | 0 |
tan | 0 | $ 1/ \sqrt{3}$ | 1 | $ \sqrt{3} $ | ∞ |
'Major > Math' 카테고리의 다른 글
Weight function (가중 함수), Weighted Average (가중 평균) (0) | 2023.04.13 |
---|---|
사인법칙 (Law of sines), 코사인법칙 (Law of cosines) (0) | 2023.03.13 |
Integral Asymptotics- Stationary Phase Method (0) | 2021.10.17 |
테일러 급수 (Taylor Series) (0) | 2017.11.03 |
고등학교 수학공식 (0) | 2012.12.15 |
댓글